

Class 17: Analysis of variation

Learning Goal

- To understand the methods for determining the extent of variation in sequence and expression among individuals in response to physiological or genetic differences
- Learning Objectives
 - List and define the types of genetic variation that can occur among individuals in a population
 - Define restriction fragment length polymorphisms (RFLPs) and explain how they are analyzed in genotyping and genetic fingerprinting
 - Define short tandem repeats (STRs) and variable number tandem repeats (VNTRs) and explain how they are analyzed
 - Explain the use of microarrays in analyzing single nucleotide polymorphisms (SNPs)
 - Describe how these technologies are used in analyzing human genomes through linkage analysis and genome wide association studies (GWAS)
- Reading assignment:
 - Dale From Genes to Genomes: Chapt 9

BIOL 426/626: Approaches to Molecular Biology

Where does phenotypic variation come from?

- With your group, talk about two topics:
 - 1. What kinds of changes to the structure of genomic DNA could cause changes in phenotype?
 - 2. Where in the genome might you expect to find these changes and what aspect of the expression of genes might they alter?
- Talk about these for about 10 minutes

BIOL 426/626: Approaches to Molecular Biology

6

Kinds of mutations causing phenotypic variation

- SNPs (single nucleotide polymorphisms)
- Indels (insertion/deletions)
- Tandem duplications
- Translocations
- Inversions
- Loss of heterozygosity (LOH)
 - Resulting from large deletions or loss of chromosomes

- Where they might happen
 - Exon or introns
 - Promoters
 - 5' or 3' untranslated
 - Splice sites
 - Non-coding regulatory RNAs
- What aspect(s) of gene expression?

OPEN a ACCESS Freely available online

PLOS BIOLOGY

The Diploid Genome Sequence of an Individual Human

Samuel Levy^{1*}, Granger Sutton¹, Pauline C. Ng¹, Lars Feuk², Aaron L. Halpern¹, Brian P. Walenz¹, Nelson Axelrod¹, Jiaqi Huang¹, Ewen F. Kirkness¹, Gennady Denisov¹, Yuan Lin¹, Jeffrey R. MacDonald², Andy Wing Chun Pang², Mary Shaqo², Timothy B. Stockwell¹, Alexia Tsiamouri¹, Vineet Bafna³, Vikas Bansal³, Saul A. Kravitz¹, Dana A. Busam¹, Karen Y. Beeson¹, Tina C. McIntosh¹, Karin A. Remington¹, Jose<u>p F. Abril⁴, John</u> Gill¹, Jon Borman¹, Yu-Hui Rogers¹, Marvin E. Frazier¹, Stephen W. Scherer², Robert L. Strausberg¹, J. Craig Venter¹

1 J. Craig Venter Institute, Rockville, Maryland, United States of America, 2 Program in Genetics and Genetics Biology, The Hospital for Sick Children, and Molecular and Medical Genetics, University of Toronto, Toronto, Ontario, Canada, 3 Department of Computer Science and Engineering, University of California San Diego, La Jolla, California, United States of America, 4 Genetics Department, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain

Presented here is Results fragments, sequen

bases (Mb) of con

Donor Pedigree and Karyotype

Ve developed a leles within this

modified version of The individual whose genome is described in this report is prmation human individual diploid g reference assembly J. Craig Venter, who was born on 14 October 1946, a self-1,288,319 were not identified Caucasian male. The DNA donor gave full consent 1-82,711 bp), 90 bp), 292,102 heterd inversions, as well to provide his DNA for study via sequencing methods and to P DNA variation accounts for 22% o disclose publicly his genomic data in totality. The collection % of genes were important role for r heterozygous for o of DNA from blood with attendant personal, medical, and span 1.5 Gb of genome sequence phenotypic trait data was performed on an ongoing basis. me. These data future genome depict a definitive Ethical review of the study protocol was performed annually. comparisons and e

riants (of which titutions (2-206

n random DNA

ng 2,810 million

Comparison of the Venter genome to the reference genome...

- 3,213,401 single nucleotide polymorphisms (SNPs)
- 53,823 block substitutions* (2–206 bp)
- 292,102 heterozygous indels (1–571 bp)
- 559,473 homozygous indels (1-82,711 bp)
- 90 inversions
- "Numerous segmental duplications and copy number variations"

* small regions with many substitutions

Levy S et al. PLoS Biol. 2007 5:e254.

14

BIOL 426/626: Approaches to Molecular Biology

....

....

Range of sizes of each type of variation

		maximum	wear
SNP	1	1	1
Block substitution	2	206	4.8
Heterozygous indels	1	321	2.4
Homozygous insertions	1	82,711	11.3
Homozygous deletions	1	18,484	9.9
Inversion	7	670,345	21,272
Complex	2	571	11.7

Where do SNPs occur? Nearly half the genes are heterozygous • 44% of genes are heterozygous for one or more mutations • For simplicity, the two alleles are termed A and B alleles Percent • Analyzing SNPs or other mutations involve distinguishing between 40 the A and B alleles 32 • How is that done? Within non-coding sequence of a gene 10 G-C G-C 8 A - T A - T 4 A - T A - T Non-synonymous coding* 3 T - A T - A 3' untranslated region ~1 С T - A - G Synonymous coding ~1 C - G C-G G-C G-C * Only these change protein coding! C - G C - G Т - А T - A A allele B allele BIOL 426/626: Approaches to Molecular Biology 20

BIOL 426/626: Approaches to Molecular Biology

Classification

Intronic

Intergenic

Upstream

Downstream

17

What genetic analysis could exploit SNPs?

 In groups, try to think of every possible way SNPs could be used for genetic analysis

- Polymorphisms provide a powerful genetic tool
- SNPs and other mutations can be used to ...
 - ...map genes associated with Mendelian genetic diseases
 - ...map genes associated with incidence of polygenic diseases
 - ...do forensic analysis
 - ...test for paternity
 - ...analyze variation in response to drugs
 - ...more?

Genotyping SNPs?

- · Restriction fragment length polymorphisms (RFLPs)
 - Some SNPs by chance alter a restriction enzyme site
 - Most SNPs don't do that
 - Indels or repeated regions between restriction sites can create an RFLP
- SNP microarrays
 - Useful for any known SNP
 - Easily automated
- Can not find novel SNPs
- Deep (next generation) sequencing
 - Can find novel SNPs
 - Too expensive for routine screening (at present)
 - Exome sequencing reduces cost but most SNPs are outside transcribed regions

BIOL 426/626: Approaches to Molecular Biology

25

Genotyping SNPs?

29

- Restriction fragment length polymorphisms (RFLPs)
 - Some SNPs by chance alter a restriction enzyme site
 - Most SNPs don't do that
 - Indels between restriction sites can create an RFLP
- SNP microarrays
 - Useful for any known SNP
 - Easily automated
 - Can not find novel SNPs
- Deep (next generation) sequencing
 - Can find novel SNPs
 - Too expensive for routine screening (at present)
 - Exome sequencing reduces cost but most SNPs are outside transcribed regions

<section-header>

BIOL 426/626: Approaches to Molecular Biology

BIOL 426/626: Approaches to Molecular Biology

30

SNPs can be used to map linked genes

 SNPs near a gene carrying a mutation causing or contributing to a disease will be inherited by affected individuals

33

- GWAS (genome wide association study)
- Compare SNPs across the genome
- Requires large numbers of affected and unaffected people
- A SNP near any gene contributing to the disease will appear more often in affected than unaffected people

BIOL 426/626: Approaches to Molecular Biology

... Changes in genetic locus copy number CNV = copy number variant (a) (**b**) No CNV Duplication Genotypes AA AB BB AAA ABB BB (c) Hemizygous Deletion (d) Homozygous Deletion B BB BB Genotypes Α 35 BIOL 426/626: Approaches to Molecular Biology

- Because pairs of chromosomes differ in the SNPs they carry they essentially are a "tag" that marks each of them
- From the genome sequence we know that large deletions and insertions are common; these change to "copy number" of the sequences in the two chromosomes
- SNP array analysis can identify regions of copy number variation (CNV)

